A norm inequality for pairs of commuting positive semidefinite matrices
نویسندگان
چکیده
منابع مشابه
A Norm Compression Inequality for Block Partitioned Positive Semidefinite Matrices
where B and D are square blocks. We prove the following inequalities for the Schatten q-norm ||.||q , which are sharp when the blocks are of size at least 2× 2: ||A||q ≤ (2 q − 2)||C||q + ||B|| q q + ||D|| q q, 1 ≤ q ≤ 2, and ||A||q ≥ (2 q − 2)||C||q + ||B|| q q + ||D|| q q, 2 ≤ q. These bounds can be extended to symmetric partitionings into larger numbers of blocks, at the expense of no longer...
متن کاملA determinantal inequality for positive semidefinite matrices
Let A,B,C be n× n positive semidefinite matrices. It is known that det(A+ B + C) + detC ≥ det(A+ C) + det(B + C), which includes det(A+B) ≥ detA+ detB as a special case. In this article, a relation between these two inequalities is proved, namely, det(A+ B + C) + detC − (det(A+ C) + det(B + C)) ≥ det(A+ B)− (detA+ detB).
متن کاملSingular value inequalities for positive semidefinite matrices
In this note, we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique. Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl. 308 (2000) 203-211] and [Linear Algebra Appl. 428 (2008) 2177-2191].
متن کاملsingular value inequalities for positive semidefinite matrices
in this note, we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique. our results are similar to some inequalities shown by bhatia and kittaneh in [linear algebra appl. 308 (2000) 203-211] and [linear algebra appl. 428 (2008) 2177-2191].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Electronic Journal of Linear Algebra
سال: 2015
ISSN: 1081-3810
DOI: 10.13001/1081-3810.2829